
netMUSE: Networked Multi-user Sonic Environment

In: David Holland, Louise Rossiter (Eds.) Proceedings of Sound, Sight, Space and Play 2013
Postgraduate Symposium for the Creative Sonic Arts

De Montfort University Leicester, United Kingdom, 5-7 June 2013.

1

netMUSE: Networked Multi-user Sonic Environment

Bogdan Verai
Centre for Digital Music, Queen Mary University of London
School of Electronic Engineering and Computer Science

bogdan.vera@eecs.qmul.ac.uk

In: David Holland, Louise Rossiter (Eds.) Proceedings of Sound, Sight, Space and Play 2013
Postgraduate Symposium for the Creative Sonic Arts

De Montfort University Leicester, United Kingdom, 5-7 June 2013.

ABSTRACT

netMUSE is a piece of software designed to enable networked computer music
composition and performance involving many users, without sending live audio
signals over the network, inspired by recent developments in the sandbox genre of
massively multiplayer computer games. It was developed as a Master of Arts final
project at the University of York, in the MA Music Technology programme.
netMUSE was developed in Java, with the use of the Processing (Stanford University,
2008) libraries, Beads (Renaud et al, 2007) and Open Sound Control (Renaud,
2010). It is based around a custom developed sever-client system designed to host a
persistent session for long periods of time. This allows users to build sound
generating structures from basic interactive building blocks in one very large 2D
space, and interact with them together in real time.
This paper focuses on the aesthetic and compositional principles driving the project,
as well as touching on the technical implementation and describing the current state
of the software. Finally, the possibilities created by this type of networked music
application are explored.

netMUSE: Networked Multi-user Sonic Environment

In: David Holland, Louise Rossiter (Eds.) Proceedings of Sound, Sight, Space and Play 2013
Postgraduate Symposium for the Creative Sonic Arts

De Montfort University Leicester, United Kingdom, 5-7 June 2013.

2

1. Literature Review

Networked music performance
technology was in part pioneered by
research done at CCRMA’s SoundWIRE
group, at Stanford University, led by
director Chris Chafe. Research at
SoundWIRE resulted in software such
as JackTrip, described as ‘A System for
High-Quality Audio Network
Performance over The Internet’
(Stanford University, 2008). Publications
from this department cover a wide range
of topics, including studies into network
propagation latency, internet acoustics,
network performance systems and
software design.
 A few approaches to networked music
performance can be identified, but so far
there appear to be no universally
established classifications. Considering
the research of academics such as Alain
Renaud and Alexander Carôt, the
approaches can be thought of as
latency critical and latency accepting
subtypes. In the first type, the latency of
the network is critical to the
performance, and high latencies are not
acceptable. Generally a latency higher
than around 25 ms will make it difficult
for musicians to play at fast tempos,
causing them to slow down to keep up
with each other. Renaud et al. Define
25ms as the EPT, ensemble
performance threshold, which they
describe as ‘the maximum delay that
allows for musicians to play in
synchronisation’ (Renaud et al, 2007).
The latency accepting approach
considers latency as non-critical, and
the musicians are not expected to
interact in real time, or timing is not
critical to the music being performed.
 There have been various attempts to

tackle latency in networked music.
Renaud et al describe an example
timing system used in Ninjam (Renaud
et al, 2007) (Novel Intervallic Jamming
Architecture), from Cockos (creators of
the Reaper DAW). In Ninjam, intentional
delays are added based on a central
metronome, to the point where
performers receive each other's audio
with latency equal to the duration of a
set number of bars, so the musicians
play asynchronously but technically stay
in time. Additionally, Renaud (Renaud,
2010) presents a cueing system dubbed
‘Master Cue Generator’, which he
describes as being ‘used to trigger
performers (humans or computers) over
an IP-based network’. Renaud identifies
three types of cues, temporal,
behavioural and notational. The MCG
exploits these ideas and, as Renaud
explains, it ‘broadcasts important
musical information by providing a basic
structure to the nodes playing over the
network, such as which section of the
piece the nodes are in, as well as
warning messages that the piece is
about to switch to another section.’ The
apparent success of these techniques
and continuing research seems to
indicate that in the future users will
possibly embrace interacting in a latent
performance environment

1.1 Multiplayer Games and the
Sandbox Paradigm

In recent years, the computer game
industry has been revolutionized by the
emergence and subsequent popularity
of MMO (massively-multiplayer online)
games. This type of game employs a
server-client based architecture
(Caltagirone, 2002), allowing a very
large number of users (sometimes

netMUSE: Networked Multi-user Sonic Environment

In: David Holland, Louise Rossiter (Eds.) Proceedings of Sound, Sight, Space and Play 2013
Postgraduate Symposium for the Creative Sonic Arts

De Montfort University Leicester, United Kingdom, 5-7 June 2013.

3

ranging in the tens of thousands) to
interact in one shared game world, over
a very long period of time. In the
MMORPG variety, which is arguably the
most popular, long-term player
participation is driven primarily by the
endeavour to 'level up' or improve a
character by gaining character
experience. Character leveling, in turn,
allows players access to more areas of
the game world, populated by more
powerful enemies with increasingly high
experience and loot returns. Another
variety of MMO game has emerged
quite recently, and is called a Sandbox
MMO. This type of game often does not
provide a set of rules for 'winning' or
character progression, but rather allows
users to do anything they like. Often a
'building' mechanic is involved, which
allows players to work together (or
alone) to create things from a palette of
building blocks. Perhaps the most well
known game of this type is Markus
Persson's 'Minecraft' (Mojang, n.d.),
which has garnered an immense
amount of popularity in recent years.
Minecraft's world is made up almost
entirely of equally sized cube-shaped
blocks, with various properties and
appearance. Users can mine blocks
from the environment, collect them, and
use them again to build structures, such
as buildings or devices. Some blocks
can be crafted into blocks with special
properties, such as an extensive set of
electronic circuitry-inspired blocks called
'redstone', which allow users to create
interactive structures and logical circuits.
Consequently, some Minecraft servers
contain immense and intricate player
content, built over months or years.
Many servers start new players in areas
with immense player-constructed
castles, designed to showcase the
architectural skills of users on that

server. In this regard, every Minecraft
server is completely different, and is a
world and a community onto itself. On a
note perhaps most related to this
project, there is a type of block in
Minecraft called a 'note block', which
plays a pitched sound when activated.
The blocks can be activated using
redstone circuits, allowing players to
construct very complex programmable
sequencers, although the quality and
quantity of the sounds is very limited.

1. Introduction

Using the massively multi-user sandbox
paradigm as an inspiration, netMUSE is
a software system that allows a large
number of users to interact musically in
a novel way, encouraging collective
creative input in a large, distributed
performance space. Just as user
creations in a sandbox game such as
Minecraft can remain persistently inside
a server's game world for other users to
explore. NetMUSE explores the idea of
storing musical arrangements for long
periods of time, during which they are
available for other users to manipulate
or simply experience.
 The system provides users with a
visual interactive interface to sound
generating entities that are shared
seamlessly between users connected to
the same netMUSE server. From a set
of familiar building blocks such as
samplers, oscillators, granulators and
sequencers, users build sound
generating structures from a top down
perspective, and all user actions
including adding or manipulating entities
are replicated in real time to all other
connected users.
 Another way in which netMUSE
mimics the sandbox game paradigm is

netMUSE: Networked Multi-user Sonic Environment

In: David Holland, Louise Rossiter (Eds.) Proceedings of Sound, Sight, Space and Play 2013
Postgraduate Symposium for the Creative Sonic Arts

De Montfort University Leicester, United Kingdom, 5-7 June 2013.

4

by making the available workspace very
large. A user can navigate along this
large 'map' using the keyboard, but can
only hear sounds that are generated
directly around their location, using
realistic sound attenuation. This adds an
element of exploration to the user
experience, and also encourages
creative users to exploit this element in
their compositions, for instance by
creating fields of sound generating
entities over wide areas which users can
never listen to as a whole, but rather
must explore the piece in a non-linear
fashion by physically navigating through
it.

2. Framework

netMUSE's interface (in its current form)
shows a top-down 2D view of a large
space called a 'map'. Form a drop down
menu, users can select from a number
of interactive entities, such as
oscillators, sample players, circular
sequencers (called 'wavefronts') and

granulators. These entities can be
added onto the map using the mouse,
after which they are editable through
context menus revealed by right
clicking. Object context menus include
options such as removal and cloning,
oscillator frequencies, sample selection,
etc. Overall the interface is familiar to
users that have used software such as
Max/MSP, however, rather than relying
on connections or patch cords,
netMUSE's workflow relies on proximity
between entities as well as entity
placement. Due to the fact that output
volume attenuates with distance, each
user's position on the map also directs
their perception of the performance, and
could be thought of as an element that
directly affects it.
 Communication between users
connected to a session is facilitated by a
built in terminal-like interface which
enables chatting, while also allowing
various types of commands (such as
commands for 'kicking' or banning users
and testing network latency).

 Figure 1 Client-side interface.

netMUSE: Networked Multi-user Sonic Environment

In: David Holland, Louise Rossiter (Eds.) Proceedings of Sound, Sight, Space and Play 2013
Postgraduate Symposium for the Creative Sonic Arts

De Montfort University Leicester, United Kingdom, 5-7 June 2013.

5

3.1 Objects

In its proof of concept form, the system
provides a basic set of usable entities,
consisting of a sine wave oscillator with
envelope controls (labeled a 'Bloop'), a
variable rate sample player, a granulator
entity (labeled 'Grain' with a variety of
controls) and a type of circular
sequencer, labeled 'Wavefront'. The
various sound generating entities
respond differently to the influence one
or more Wavefront entities.

3.1.1 Wavefront

 The Wavefront entity implements a
polyphonic 16-step sequencer displayed
as a series of concentric circles,
representing metrical steps, extending
around one central point which emits
periodic waves. Objects in the
Wavefront's area of influence are
triggered by the wave according each
entity's activation rules (for example,

samples are simply triggered while
Grains are faded in at various speeds by
the wave). Objects can either be
snapped to a particular Wavefront's
'grid' or be placed in a free-form
manner. Objects that are snapped to a
parent Wavefront respond to their
parent's change in parameters such as
size or position. This means that a
Wavefront's area can be extended to fill
the entire screen, entities can be
snapped easily to the Wavefront, after
which the parent Wavefront can be
collapsed into a very small area, with
the entities preserving their position
relative to their parent. Several
Wavefronts can have overlapping areas,
triggering or affecting common entities
together. Additionally, a Wavefront can
be set to trigger another Wavefront
when its activation wave finishes one
cycle, so an endless number of
Wavefronts can be linked together to
form more complex patterns.

Figure 2 Sample entities sequenced around one Wavefront.

netMUSE: Networked Multi-user Sonic Environment

In: David Holland, Louise Rossiter (Eds.) Proceedings of Sound, Sight, Space and Play 2013
Postgraduate Symposium for the Creative Sonic Arts

De Montfort University Leicester, United Kingdom, 5-7 June 2013.

6

3.1.2 Bloop

The Bloop entity is a simple sinusoidal
oscillator with an attack and release
envelope as well as pitch controls.
Wavefronts trigger Bloop entities by
starting their envelopes. By placing
Bloops around one or several
Wavefronts, complex sounds can be
generated by additive synthesis.

3.1.3 Sample

The Sample entity implements a
variable speed sample player which can
be used for tasks such as creating drum
beats, sound collage/musique concrete,
etc. Currently the Sample object can
only load audio files that are locally
available to a user, however ideally the
server could store a collection of sound
files chosen by users, enabling many
more possibilities for composition.

3.1.4 Grain

The Grain entity implements a granular
synthesizer with a variety of controls
such as play head position, grain size,
grain speed, grain separation and pitch.
Similarly to the Sample entity, Grain can
load a file from disk for granulation. The
entity will essentially play the same
grain of sound from the same position in
the audio file continuously, however it
will by inaudible by default. When the
activation wave of a Wavefront passes
close to a Grain entity, the position of
the closest point on the wave relative to
the Grain will being to fade it in, and
then out, as it passes over it. Multiple
waves passing over the same grain at
the same time have an additive
influence (although the gain factor
cannot exceed 1.0).

 The Grain entity creates compositional
possibilities due to the fact that several
Wavefronts playing at different speeds
and having areas of influence of various
sizes can activate a large field of diverse
grain entities. Distance gain attenuation
then allows users to explore potentially
very large granular sound 'clouds'.

3.2 Compositional Methods

While the sandbox paradigm often
implies that players have free reign to
create or do anything they desire, this is
not often the case. In fact, it can be
argued that most sandbox computer
games impose certain limits on creative
freedom, either for reasons of technical
implementation difficulty or, more often,
due to a clear desire to steer users into
a particular creative direction. For
example, Minecraft’s visual style
revolves around an 8-bit aesthetic, with
pixelated textures and ‘voxelated’
geometry made up of small cubes. It
would be impossible for users to create
curved surfaces, for example, and
hence the overall look of user content
can be described as blocky.
Nevertheless, this gives Minecraft its
characteristic style, and this retro
aesthetic has been praised. Within the
limits of this aesthetic, however, players
have great creative freedom.
 In netMUSE, the aim was the steer
users towards constructing
soundscapes while guiding them away
from simply using the software as a
DAW and just sequencing sounds or
creating drum beats (although this is still
possible, while difficult). The choice of
sounds objects made available to the
users makes the creation of granular or
additive synthesis-based compositions
very easy, as the visual interface makes

netMUSE: Networked Multi-user Sonic Environment

In: David Holland, Louise Rossiter (Eds.) Proceedings of Sound, Sight, Space and Play 2013
Postgraduate Symposium for the Creative Sonic Arts

De Montfort University Leicester, United Kingdom, 5-7 June 2013.

7

it intuitive to arrange sounds.

4. Technical Implementation

netMUSE was created using the
Processing framework, along with a set
of libraries including OscP5, which
enables communication over computer
networks using the Open Sound Control
format. The overall system includes a
server application, which must run
continuously on a publicly reachable
machine, and a client application that
draws graphics and generates sound,
serving as an interface for user input.
Sound synthesis was implemented
using Ollie Brown's Beads library, which
provides a set of Java classes for sound
synthesis similar to SuperCollider's set
of UGENs. The interactive interface was
developed using OpenGL, for graphics
rendering, and the ControlP5 library for
creating a custom user interface.

4.1 The Server-Client Model

netMUSE is based around networked
communication between clients and one
server. This is somewhat similar to the
server-client structure of massively
multiplayer games, but the server
application can also be compared to the
concept of a dedicated server, as it is
designed to be freely hosted by end
users on home machines rather than the
entire system being based around a
small number of servers. In the case of
netMUSE, a user runs an instance of
the main netMUSE application, which
allows users to interact with the shared
workspace and allows them to see and

hear each other’s actions. The server
application runs on a public machine,
handles connections between clients
connected to it and persistently stores a
representation of the entities and users
existing on its session. Figure 3 shows a
diagram of some of the likely networking
scenarios, and mentions some of the
important concepts such as Network
Address Translation (or more
importantly, how to bypass it) and the
server’s location at the centre of the
system as a means of allowing clients
from various connections to
communicate with each other and
create the impression of a seamless
virtual space. The efficacy of this model
is documented by various publications
(Caltagirone, 2002) (Assiotis and
Tzanov 2005), and has proven its use in
commercial applications, although most
recently there has been a trend towards
decentralizing this model and using
peer-to-peer connections. The paper
‘Architecture for a Massively Multiplayer
Online Role Playing Game Engine’
(Caltagirone, 2002) explains:

Two architectures are possible with
multiplayer games (with some
variations), centralized server and
peer-to-peer (distributed). The
architecture being presented is a
centralized server, and was
designed as such for five reasons,
world consistency, security,
avoiding the game clock problem,
simpler implementation, and a
viable business model.

netMUSE: Networked Multi-user Sonic Environment

In: David Holland, Louise Rossiter (Eds.) Proceedings of Sound, Sight, Space and Play 2013
Postgraduate Symposium for the Creative Sonic Arts

De Montfort University Leicester, United Kingdom, 5-7 June 2013.

8

Figure 3 Some common networking scenarios.

Communication between the clients
and the server is done through standard
Open Sound Control messages, using a
custom formatting scheme. A message
generally consists of a pattern matching
address, used in netMUSE to specify
the type of message, followed by a
series of arguments. The choice of

using the pattern matching address
simply to specify the type of message
somewhat goes against the intended
purpose of this feature, which is
normally used in OSC applications to
route messages to specially addressed
controls. Because netMUSE has a
completely freeform architecture, it

netMUSE: Networked Multi-user Sonic Environment

In: David Holland, Louise Rossiter (Eds.) Proceedings of Sound, Sight, Space and Play 2013
Postgraduate Symposium for the Creative Sonic Arts

De Montfort University Leicester, United Kingdom, 5-7 June 2013.

9

would not make very much sense to use
the address this way, and instead
various arguments specify entities,
users, etc. The following example
message informs a server (or client) that
a user has added an entity.

"/update_existingEntity, "user1",
"Wavefront", "2349512", 100, 200

The pattern matching address starts
with a “/” character, conforming to the
pattern matching address standard. The
following arguments are the name of the
user that added the entity, the type of
entity, the unique identifier of the entity
and its x and y coordinates on the map.
In comparison, a classically formatted
OSC message might simply have a
pattern matching address of the type

“/controlPanel1/knobs/cutoff”, followed
by a controller value. In this case, the
message might change the position of
the cutoff knob on the first control panel
of some hypothetical synthesizer.
 A client would send the message
above when the user adds an entity,
and would then forward it to the server.
The server listens for messages and
handles them based on their pattern
matching address. In this case, the
server would add the entity to its list of
entities, and then forward identically
formatted messages to all of the clients
connected to the server, except the one
that originally sent the message. The
server and client both continuously
listen for incoming messages on a
dedicated thread. An example message
flow is illustrated in Figure 4.

Figure 4 Message flow for when a user moves an entity.

netMUSE: Networked Multi-user Sonic Environment

In: David Holland, Louise Rossiter (Eds.) Proceedings of Sound, Sight, Space and Play 2013
Postgraduate Symposium for the Creative Sonic Arts

De Montfort University Leicester, United Kingdom, 5-7 June 2013.

10

4.2 Bypassing Network Address
Translation
The architecture described above
suffers from a significant flaw if applied
naïvely to an online context. When the
server is running on a Local Area
Network located behind a router with a
NAT firewall, it is possible for users on
the same network to connect to the
server simply by knowing its IP. The
server then records the users’ IPs and
can route the messages to these
addresses. Attempting to host the server
for users outside of the local network
presents a problem in that the router will
have an external address, which is
accessible to machines connected to
the internet, but the server itself will be
running on a local machine with an
inaccessible and possibly random
address, making it impossible to reach.
This issue is resolved by forwarding a
port in the router to the server machine.
External clients can then reach the
server by sending messages to the
router’s address on the given port, and
the messages will then be automatically
forwarded to the server. This issue
occurs for the clients as well, and the
server will not be able to send
messages back to clients behind a NAT.
Rather than making users forward their
own ports, it is possible to solve this
problem with a technique called NAT
hole punching (Ford et al, 2013).
 NAT hole punching is generally used
to establish connections between clients
called peers, which are all behind NAT
firewalls, an issue that commonly occurs
in applications such as torrent clients
and online games. Classic NAT hole
punching involves a hand shaking
server, which is completely accessible,
to which the clients all initially connect.

The server than records the original port
and address of the clients, and instructs
them to message each other on the
same ports that the original connections
were established through. Sending
network packets back through a router’s
output port will normally cause that port
to remain open indefinitely, although the
port will generally be closed
automatically after a certain amount of
time has passed without any packet
throughput. Keep alive packets are then
sent periodically to force the port to
remain open. The individual clients can
then communicate to each other through
the same ports they originally used to
contact the server.
 netMUSE was a prime candidate for
this technique, as it inherently uses a
server to route messages, although in
this case the server acts as more than
just a handshaking server. The server
application is designed to listen and
send messages on port 8000, whereas
the client will simply find a random port
to both listen and receive on. When a
client connects to the server, the server
retrieves the port of the output (and in
this case the input) socket of the NAT in
the client’s router, and stores it. Keep
alive messages are then periodically
sent to keep this connection open, and
the server communicates to the client on
that port. The exchange of keep alive
messages also serves as a way to
detect when a client has disconnected,
so that it can be removed from the
active users list. Thus, clients in
netMUSE do not communicate with
each other, but rather through the
server, which can keep the connection
open between itself and the clients.
 This techniques allows users from
most networking conditions, and most
importantly people with no technical

netMUSE: Networked Multi-user Sonic Environment

In: David Holland, Louise Rossiter (Eds.) Proceedings of Sound, Sight, Space and Play 2013
Postgraduate Symposium for the Creative Sonic Arts

De Montfort University Leicester, United Kingdom, 5-7 June 2013.

11

knowledge, to join the server and begin
experimenting with the software.

4.3 Network Latency

netMUSE takes a predominantly latency
accepting approach, and there is very
little functionality implemented to
alleviate the effects of latency, although
there are certain cases in the software
where synchronization is important, as
covered in the later section about
Wavefront entities. Much like in the
multiplayer games it takes inspiration
from, latency and lag remains an
unavoidable nuisance, especially in
long-distance interaction scenarios, and
there remains a large spectrum of
further research to be done in this area.
 netMUSE attempts to treat the
problem of latency by intentionally
turning the focus away from live
networked performance and towards
preparation of sequences and sounds.
Even so, it is possible to interact with
content on the server in a way that
resembles live, synchronized
performance. For example, by placing
and manipulating various entities such
as Grain or Bloop entities around a
Wavefront entity, and varying the
various parameters available, something
reminiscent of an ensemble
performance can be achieved. However,
even though users participating in such
a performance may not immediately
notice, latency introduces slight
variations in timing between users,
making the experience of the
performance ultimately inconsistent.
Generally speaking, the finer the
interaction between users, the more
latency becomes noticeable, as users’
responses to each other become
delayed more and more with respect to

the tempo. In experiments with live
networked music, latency has been
described as primarily having an effect
on the tempo of a piece, appearing to
force networked users to lower their
tempo by making them constantly wait
to respond to each other until the
performance slows down to a level
where the latency falls beneath a
perceptual threshold, as described by
Nathan Schuett (Schuett, 2002) and
demonstrated by Chris Chafe in a series
of experiments involving subjects trying
to keep in time by clapping whilst
separated in different rooms and
hearing each other with a time delay
(Chafe et al, 2004). In netMUSE’s case,
where the performance will often revolve
around looping sequences, latency will
often result in the perceived sequences
being at least slightly out of phase with
each other, unless a stricter and more
precise synchronization is used to
ensure timing precision, which may
involve intentional limitations that can
affect the performance. netMUSE treats
this desynchronisation as ultimately
inevitable, and it can thought of as a
reasonable sacrifice in the endeavor to
allow a large number of users with
varying connections and from various
locations to connect and interact. In this
case it is overall more important to
ensure that the relative order and timing
between events in each user’s
perception is consistent then to attempt
to ensure that the clients all perceive
events at exactly the same time.

5. Critical Analysis and
Conclusions

The software presented exemplifies
some of the key issues within the
subject of networked music performance

netMUSE: Networked Multi-user Sonic Environment

In: David Holland, Louise Rossiter (Eds.) Proceedings of Sound, Sight, Space and Play 2013
Postgraduate Symposium for the Creative Sonic Arts

De Montfort University Leicester, United Kingdom, 5-7 June 2013.

12

and composition, while attempting to
address some of them with mixed but
promising results. One original goal of
netMUSE was not to dictate any
aesthetic or musical parameters or
limitations to the users involved,
allowing them to simply take a set of
very basic building blocks and construct
completely original sounds. Surprisingly,
this is not the case, and the users
involved in testing of the prototype were
found to construct somewhat similar
sounds, although this can be attributed
to the scarce palette of basic tools and
sounds in the prototype. As an example,
the Grain entity allows users to build
potentially unlimited types of sounds,
but only as long as the source sound
material is sufficient. For this reason,
perhaps a feature allowing users to
upload and share their own sounds for
granulation would greatly enhance the
type of music and sound that can be
generated. A similar conclusion can be
drawn for the Bloop object, which
essentially allows users to perform
additive synthesis. While additive
synthesis can yield incredibly complex
sounds when automated in various
ways, the sounds resulting from the test
users’ interactions were often quite
similar. Users would often attempt to
create sequences of related harmonics,
or to simply construct melodies
consisting of clearly defined individual
notes.
 As a general conclusion, the end
result of longer sessions has primarily
been the creation of large, continuous
fields of sounds, which can be explored
via simple movement of the viewpoint
across the map. This is consistent with
the author’s original view of what longer
term multi-user interaction may lead to:
the inevitable conglomeration of users’
creations into one mass. It is difficult to

characterize the genre of music
produced in this situation, although its
often cacophonous nature can be
likened to that of the aptly named genre
of “noise music”. In truth, however, the
presence of many users’ contributions,
spread across a large map, creates
what may be thought of as a stylistic
continuum. The performance element
can be attributed both to the users that
have prepared the content existing in
the session and equally to the observer,
who may essentially remix the sound
generated through simple movement
across the map, allowing the built in
distance attenuation to mix the sounds.
This is reminiscent of the concept of a
performance ecosystem, described by
Tom Davis (Davis, 2011), paraphrasing
Bowers (Bowers, 2003), as an
assemblage of ‘artifacts and practices
that enable him to participate in
collective music making’. In this sense,
a live netMUSE session is perhaps a
very literal instance of such an
ecosystem, and much like a biological
ecosystem, it can grow and evolve over
time based on complex interactions
between users with varying motives and
aesthetic preferences. As described in
section 5, implementing some form of
game-inspired conflict or competition
mechanic would take these ideas even
further and explore the concept of
challenge in music. Martin Parker
(Parker, 2004) has presented some
related ideas. He talks about making
musical interfaces purposefully
challenging, writing that the limitations of
various instruments and the challenge
involved in playing them gives them
their specific sound and expression. He
then presents a set of ideas for a piece
of musical software that actively works
against the user. The author of this
dissertation believes that this concept

netMUSE: Networked Multi-user Sonic Environment

In: David Holland, Louise Rossiter (Eds.) Proceedings of Sound, Sight, Space and Play 2013
Postgraduate Symposium for the Creative Sonic Arts

De Montfort University Leicester, United Kingdom, 5-7 June 2013.

13

could be taken further, and that the
challenge may arise from the actual
competition between users, leading to
an interesting dynamic that would be
interesting to observe in a massively
multi-user context.
 In conclusion, netMUSE offers a
reasonable test bed for exploring long
term networked music performance. It
offers a good possibility for developing a
series of analytical tools that can shed
light on the way users might interact in
such an environment, and the presence
of a central server means that, in a
research scenario, data can be gathered
and analyzed in a central point, over a
long period of time. After some further
development, an effort will be made by
the author to host a permanent
netMUSE server, for anyone to access
at any time, although the resources
required to scale up the user base are

yet to be determined, and it may be
discovered that true massively multi-
user interaction can only be achieved
with the considerably larger computing
resources of a large company. At some
point in the future, the software may be
released as open source, making it easy
for users to host their own servers.
Splitting up the potential overall user
base into several local servers would
mitigate the problem of latency, while
making netMUSE even more similar to a
sandbox MMO like Minecraft, and more
dissimilar to a MMORPG like World of
Warcraft.
All of these possibilities remain to be
explored in the near future, with equal
emphasis on the artistic and research
aspect of the project, even if netMUSE
itself may be rewritten and reconsidered
with the added benefit of hindsight.

netMUSE: Networked Multi-user Sonic Environment

In: David Holland, Louise Rossiter (Eds.) Proceedings of Sound, Sight, Space and Play 2013
Postgraduate Symposium for the Creative Sonic Arts

De Montfort University Leicester, United Kingdom, 5-7 June 2013.

14

References

Stanford University (2008) Jacktrip, [Online]. Available from:
https://ccrma.stanford.edu/groups/soundwire/software/jacktrip/

Renaud et al (2007), Networked Music Performance: State of the Art, in 30th International
Conference on Intelligent Audio Environments.

Renaud, A. (2010) Dynamic Cues for Network Music Interactions, in Sound and Music
Computing Conference.

Caltagirone, S. et al (2002), Architecture for a Massively Multiplayer Online Role Playing
Game Engine, Journal of Computing Sciences in Colleges, pp. 105-116.

Mojang, "Minecraft," [Online]. Available from: https://minecraft.net/.

Assiotis, M. and Tzanov, V. (2005) A distributed architecture for massive multiplayer online
role-playing games,” http://pdos.csail.mit.edu/6.824-2005/reports/assiotis.pdf

Ford, B. et al (2013), Peer-to-Peer Communication Across Network Address Translators,
[Online]. Available from: http://www.brynosaurus.com/pub/net/p2pnat/.

Schuett, N. (2002), "The Effects of Latency on Ensemble Performance," Stanford University.

Chafe, C. et al (2004), "Effect of Time Delay on Ensemble Accuracy," in International
Symposium on Musical Acoustics, Nara.

Davis, T. (2011), "Towards a Relational Understandsing of the Performance Ecosystem,"
Organized Sound, pp. 120-124.

Bowers, J., (2003), Improvising Machines: Ethnographically Informed Design for Improvised
Electro-Acoustic Music, in University of East Anglia.

Parker, M., (2004), Resisting the Seamless, International Journal of Architectural Computing,
pp. 430-442.

Notes

1 Many thanks to Oli Larkin (Music Research Centre, University of York) for supervision of this work,
which was part of my Master of Arts final project.

