
Nick Collins
Centre for Electronic Arts
Middlesex University
Cat Hill, Barnet, Herts, EN4 8HT
UNITED KINGDOM
n.collins@mdx.ac.uk
http://www.axp.mdx.ac.uk/~nicholas15/

Algorithmic Composition Methods for Breakbeat Science

Abstract

Algorithmic composition methods are applied to the generation and manipulation of
beats for dance music. The goal is to create an output beat in a consistent style with
continuous subtle variation rather than stale repetition. In particular two tasks are
studied in depth. The first is the generation of a beat itself using algorithmic
composition methods to maintain variation. Examples are given in the context of UK
garage/two step. The second is an automation of breakbeat cutting, as primarily found
in drum and bass, though the model and its generalisations can be applied to any
music and source audio segment. A side effect of attempting to create these
procedures is an enhanced modelling of the styles and therefore a contribution to
analysis of the genre.

Keywords- algorithmic composition, breakbeat

1 Introduction

The techniques described herein show application of relatively simple algorithmic
composition and audio processing alongside modelling of some aspects of breakbeat
science. Previous exploration in the dance music field has typically involved working
laboriously by hand. Algorithmic composition can help to automate certain processes,
and to generate subtle variations on basic beats without breaking with the consistency
of a style.
 The only algorithmic composition tool with direct relevance to dance music with
much current exposure is Koan [3]. It is certainly applicable to generating techno
tunes that can change pattern every bar but is orientated perhaps most towards
ambient background music. Koan is restricted by its interface functionality, and has
none of the real versatility of music programming languages like Csound or
SuperCollider. Programming languages are necessary because tinkering with the fine
details of the algorithms in this paper is part of getting original usage from these
ideas. Particular compositions are likely to need specific modification. The second
task, of automating breakbeat cutting, is however susceptible to being packaged as a
singular process with relatively few control parameters.
 Our work has a side effect. Since we are forced to produce models of the rhythmic
phenomena, there is a quality of analysis of these new musical styles.
 There is no claim in this to replace the human's aesthetic role. Some of the
drudgery can be automated, retaining the character of typical human decisions. The
human composer is freed to judge from a higher level of compositional decision
making. We are working towards tools that can assist production, but not to replace

http://www.axp.mdx.ac.uk/~nicholas15/

the final decision about what works as a groove or riff. The producer may finetune
algorithmic composition methods to be consistent with their aesthetic needs for a
particular track since the models can be adapted for specific circumstances.
 Where decisions are taken, the expertise of the models are hard coded in the
functions and data, so any choice from the available range for a parameter should be
correct. We are not trying to search for a solution amongst competing constraints, but
following rules precisely. There is no need for backtracking or any of the more
complex apparatus of algorithmic composition.
 There are no neural nets in this study, though it would be exciting to attempt to
apply them say, in imitating successful breakbeats or breakbeat cuts.

2 Task one- generation of a subtly varying beat

Dance tracks can tend to use repeating beats that do not vary at all. This can often
become monotonous and irritating to a listener, but then, creating continuous but
subtle variation over a six minute dance track can be very tedious for the producer.
This is a situation in which algorithmic generation is ripe for exploitation in dance
music. Since one would not wish to vary a beat so much as to distract from other
elements present in a track, we will be dealing with subtle variation. We envisage that
we have source samples for a kick drum, snare etc, which must be rhythmically
placed in time. We can also use subtle signal processing of each sample to vary the
audio stream somewhat. Because the brief is a general one, we hone in on a particular
sub genre for a practical experiment.

2.1 A model of a UK garage beat
UK Garage might be characterised by a relatively high tempo, perhaps 140 bpm, with
a definite triplet swing groove, and the renowned '2 step' feel. Usually the second and
fourth beats in the 4/4 measure have a definite snare strike, whilst the first and third
beats would contain a kick at some point. The two step itself is a feature of later drum
and bass work, beginning around 1995 following the breakbeat origins of the field. It
is characterised by the pattern (kick snare kick snare) where each strike is on its
respective beat except for the second kick, which occurs on the second quaver of the
third beat.
 The amount of swing can vary very slightly, and is usually slightly less than a half
semiquaver triplet delay for the second of two semiquavers. In proportions, a straight
semiquaver triplet split of a half beat is [0.333…,0.1666…]. For this style, the straight
techno feel of [0.25, 0.25] is transformed to something between [0.32, 0.18] and
[0.33, 0.17]. The groove level cannot be adjusted by too much without creating
something outside the style.
 Sidestepping groove, we could model a simple dance beat that does not use rolls by
a grid of 16 onset points per bar. These correspond to the semiquavers in a straight
techno groove, and the time onsets of every second semiquaver are delayed for the
swung grooves. Historically, famous old step sequencers like the TR-808 were set up
in this idiom. Dealing with triggering of drum samples for a beat, we simply
algorithmically compose patterns of onsets a bar at a time. Sixteen bits (a word in
computer parlance) is sufficient to store the binary yes/no (trigger/don't trigger)
decision for a single bar.
 The beat is modelled here as being composed of three independent streams, for kick,
snare and hihat. Below we give two methods that generate bit patterns for UK garage.

2.1.1 Version one- probability templates
In this method we have a probability that a strike will be triggered for a particular
time slot. A working set of probabilities (from 0.0 to 1.0) are:

//kick
[0.7, 0.0, 0.4, 0.1, 0.0, 0.0, 0.0, 0.2, 0.0, 0.0, 0.5, 0.0, 0.0, 0.0, 0.0, 0.3]
//snare
[0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.5, 0.0, 0.2, 0.0, 0.0, 1.0, 0.0, 0.0, 0.3]
//hihat
[0.0, 0.0, 1.0, 0.0 0.0, 0.0, 1.0, 0.7, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.7]

The reader will note that the snares on beats two and four always occur, whilst the
kick does not have to sound at all in a given bar (we could of course use the generate
and test paradigm and keep rolling dice until we get a run with at least one kick). The
probabilities of each strike are all independent, though we could easily set up more
complex transition tables where the probability of certain events changes based on
what has already occurred. It is critical that each case, and especially the extreme
cases are still valid beats. Snares on two and four with offbeat hats is the minimal
beat, whilst the maximal beat with all events is not so busy as to be difficult to listen
to.

2.1.2 Version two- genera
Here small rhythmic cells are selected one at a time. Each cell is an exact prescription
for a rhythmic figure. The cells are particular to the target line. There would be some
weighted choice amongst the cells, such that some are rarer figures than others.

//kick
genera 1- probability 0.7- [1,0,0,0, 0,0,0,0, 0,0,1,0, 0,0,0,0]
genera 2- probability 0.2- [0,1,0,1, 0,0,0,0]
genera 3- probability 0.1- [1,0,0,1, 0,0,0,0]
//snare
genera 1- probability 0.6- [0,0,0,0, 1,0,0,0]
genera 2- probability 0.3- [0,0,0,0, 1,0,0,1]
genera 3- probability 0.1- [0,0,1,0, 1,0,0,0]
//hihat
genera 1- probability 0.7- [0,0,1,0]
genera 2- probability 0.3- [0,0,1,1]

Note that the genera patterns are not all one bar long. This can cause genera to appear
displaced from their typical position. So the first bar long kick genera could start half
way through a bar, giving an out of phase 2 step beat. It is also in the nature of a naïve
choice for a genera to be repeated many times. This can be tempered by more
complex choice schemes that deliberately avoid or discourage repetition (see [1]).
 With three independent streams, there are problems with predicting every
simultaneity that may occur. Then again, we do not want to prescribe and test every
possible combination, since that is more work than doing the work by hand in the first
place! A few filters (an automatic critic) can cut out any exemplars of bad style, like
simultaneous kick and snare, as explored next.
 It should be noted that the probability template first version can be reduced to the
genera method by finding the probabilities of specific patterns of onsets. A human

would not think out a probability template in this way though, so the methods are
distinct in terms of likely human planning.

2.1.3 Further variation
After a bar's beat is rendered, we can choose to discard particular simultaneities. So,
we might mask the bit pattern for the kick with that of the snare. We can perform
other bit operations to create variations of a given pattern.
 There are also varying amplitude ranges for each possible strike position, indicating
the allowable strength of a trigger at that position.
 In rendering a beat, we also subtly vary a sample each time it is used. This avoids
the aural monotony of hearing exact repetitions of the component sounds of a beat.
Whilst ideally we would have a very large database of source samples, say one
hundred strikes of the same snare drum, we can use processes like filtering, pitch
bending, distortion and reverb to create our own variations. Unless an extreme effect
is desired, each would be varied very subtly with each new use. A pitch bend could
remain within less than an eighthtone of the original pitch, so in the range of speed
multipliers 0.986 to 1.014. This avoids any perceptible false melody of more than
quartertone step in a drum part, but gives a subtle aural stimulation.

2.2 Results
The methods are simple, and stand or fall on the efficiency of the input data.
Probability templates can easily sound excessively busy, whilst genera cells must be
of sufficient number to give variety, without introducing any inconsistent figures.
Additional information must usually be coded into the model to obtain a workable
output in the style. For example, these generation methods create bit patterns that
change every bar. If more organisation is required, we must add extra information to
our model. Typical dance music would group bars in multiples of four, and we might
generate four bar patterns as AAAB where A is a standard beat, and B is a fill pattern.
Any A could have some extremely small variation of a base pattern, perhaps with a
single kick displaced by one bit position, or one extra snare. B could be a different fill
each time, or again subtly varied.
 Incidentally, it has been observed that genera methods are fantastic for continually
varying drum and bass patterns. The simplistic sixteen bit pattern model is ignored,
and we work with floating point values of beats, so we can represent any fast rolls.
The genera do not have to add up to 4/4 bars, though in practice, a primary kick and
snare would keep a stable backdrop, to convoluted and changing rolls on a secondary
snare sound.

2.3 Extensions and further work
We have already mentioned the use of bitwise operations on the 16-bit patterns, and
the value of sectional thinking at a higher level than individual bars. However, whilst
methods like cellular automata give processes to muddle the bit cells of bar beats, it
should not be assumed that stylistically consistent beats will result from such
processing. The key is still subtle variation, and the dependence on input data.
 As with any form of algorithmic composition, if we keep track of our coverage of
the probability space, we can guide future choices to new territories or control
repetition with a slow variation. This is Charles Ames' method of statistical balance
[1].

 A consequence of modelling dance music, in particular beats, is that we can attempt
to morph beats one into another. We require a common model to morph parameter
wise to avoid abrupt changes. The reader can no doubt think up many schemes
involving the bitwise interpolation of beats, the gradual change of probability
templates or the substitution of genera. Initial experiments have been very promising,
but a word of warning. Humans are very sensitive to the groove, and attempts to
morph from a straight techno feel to the UK garage swing gave disastrous
intermediates inconsistent with any normal dance style. A discontinuity would be
needed in this instance.

2.4 Implementations
This work was first carried out with the author's own algorithmic composition test
bed, software implementing its own input language specifically for beat generations
and the rendering of subtly varying output streams. Whilst the author could carry out
some interesting experiments with this code, the realisation came that the input data
itself was often the most critical thing. The actual model is straightforward, and a
language like SuperCollider (Mac only) is perfect for exploring combined algorithmic
composition and signal processing methods in real time. Alternatively, the more
primitive but better known language of Csound could be utilised alongside custom
code for generating score files.

3 Task two-automatic breakbeat cutting
The second task concerns the arena of drum and bass ([2] gives a good background
encyclopaedia). Sources confirm that over more than ten years of breakbeat
manipulations in dance music, the dominant methodology is working by hand ([4]).
Whilst software tools like Recycle or WaveSurgeon ([3]) help in the preparation of
'hits', that is, samples of kicks, snares, portions of a beat etc., these are then triggered
via MIDI from a sequencer to create breakbeat cuts and beats. The MIDI events are
composed by hand. If we can model the choices of event position, we can
algorithmically generate similar sequences, with subtle variations to extend interest.
 We do not claim to encapsulate the whole of breakbeat cutting science with this
method, but the basis is there for new compositional directions based on algorithmic
generation.

3.1 The model- partitions and repetitions
Given a block of time, we may subdivide this block into as many equal units as we
please. From this come the duration names, quarter note, eighth note, sixteenth, being
integer subdivisions of a whole note. If our block to be subdivided is a 4/4 bar, and we
cut into eighth notes, then we could typically set up rhythms based on partitions by
concatenating adjacent eighths, for example:

3+3+2 over the 8 quavers of one bar, or 3+3+3+3+2+2 over the 16 of two

 where 2 means an event of two eighth notes (equals one quarter notes) duration.
These sorts of partitions are prevalent in music that seeks excitement. They allow one
to syncopate against the beats of a 4/4 measure, whilst recovering in time to meet a
downbeat. This is the basis of our idea for automating cuts. We compose rhythmic
figures based on syncopated 'odd' integer durations, which eventually even out using

the remainder of the space available before a downbeat. We do not have to restrict
ourselves to cuts resolving within a single bar, as the 3+3+3+3+2+2 example shows.
Mathematically, the algorithm will come down to choosing particular partitions that
favour syncopation based on odd durations.
 There is one slight complication for the application of the algorithm to the cutting of
breakbeats. In practise, portions of a breakbeat are often repeated, as if the beat is
being restarted on an offbeat. When 3+3+2 gives the durations in eighth notes of cuts,
the second three quaver duration event could represent the retriggering of the same
portion of a breakbeat as the first three. The algorithm presented will deal with this by
taking a number of repeats. The algorithm below will also allow a 'stutter' effect
caused by a small portion of the source being repeated many times.
 The input parameters of the model are:

SourceSample- a (breakbeat) sample. It is assumed to be an integer number of bars
long at the given tempo.
Tempo- the tempo of the source sample
SubDiv- the subdivisions of a 4/4 bar for the purposes of cutting. Take 8 for really
standard drum and bass cuts. It is assumed that SubDiv >4.
MaxPhraseLength- the maximum number of bars in a phrase, that is, a partition.
RepeatChance- a probability from 0 to 1 that a repeating one subdiv unit duration
sample will complete a phrase (in some circumstances). This is a stutter effect of
cliché potential in the drum and bass idiom. 0.2 is a good value to avoid overuse.
MaxRepeats- the maximum number of times a portion of the breakbeat may be
repeated within a phrase. The default is 2.

The appendix gives a simplified version of the algorithm in pseudo C code. We try to
give some essense of the calculation here.
 The algorithm calculates through one phrase at a time. We talk of a unit as being the
duration of a single subdivision of the 4/4 bar, that is a SubDiv-th note. Each phrase
corresponds to N bars, and hence N*SubDiv total units. The partition is created
proceeding by one cut at a time, choosing (randomly) a length for the cut and some
number of repeats from 1 to MaxRepeats that will keep us within the number of units
left to fill. There may be a 'one unit repeater' to end a phrase, which will still be
represented in the same way, using one unit cut and as many repeats as units remain
to fill.
 Generating the cuts information, we can then render the appropriate audio block at
the necessary point(s) (for repeats) in time, with a slight envelope to avoid clicks. We
access the source audio by the position within a phrase modulo the unit length of the
source. So a one bar source can supply data for an N bar phrase. Repeats will utilise a
previous access position.
 The critical part of the algorithm is in choosing the cut length. Choose too long, and
over time, too much of the original breakbeat tends to be revealed, diminishing the
rhythmic virtuosity characteristic of this style. Further, the cuts can start to sound a
little unnatural and forced. This algorithm then tends to favour compact short cuts
from the source sample. We choose odd numbers of units up to half of a single bar.
The phrase length in units is irrelevant to this, for if we take cuts over a bar, we tend
to just sound like we're repeating the original breakbeat too much.

Given SubDiv, let

ODDNUMBERS= {n integer: n is odd, and n<= SubDiv/2}

These give us our possible cut lengths. We can generate a random member of the set
by this procedure:

Let TEMP= SubDiv/2 (integer division).
If TEMP is even, take MAX as (TEMP-2)/2, else MAX= (TEMP-1)/2
CHOICE = randominteger(0, MAX).
Convert CHOICE to an integer as CHOICE= 2*CHOICE +1.

Now that CHOICE has been created, we must make sure it fits the available number
of units left in the phrase, Reduce CHOICE by two units a time until it fits into the
remaining space.
 Finally choose a number of repeats from 1 to MaxRepeats. If we overshoot the
remaining space (by having too many repeats) then take a single block of size the
remaining number of units. This gives the chance of a terminating segment, like the 2
in 3+3+2.

3.2 Results
Figure 1 demonstrates three partitions created from running the algorithm on three
bars worth of units with SubDiv = 8. The filled blocks represent repeats, with a
stutter effect finishing the first example.

0 1 2

repeated block

one unit

3

Figure 1 three bar, 24 unit partition examples

The model works really well on a SubDiv of 8. The syncopations are dynamic enough
to be interesting, but not so complex as to lose the listener. The sense of time is not
compromised by blocks that cut across bar lines, since the source sample is accessed
modulo its own length. Since the model assumes the source sample is an integer
number of bars long at the given tempo, then access beginning of the seventh eighth
note of the first measure will sound relevant and correct. Because cuts in eighth notes
are the stock in trade of style, the model has been optimised with this situation in
mind.

 Cutups which involved 5 unit blocks tended to sound more awkward than three unit
blocks. This is the motivation for keeping possible block sizes less than or equal to
half a bar. Yet to avoid the clichés of the style, allowing 5 unit blocks gave a greater
originality. Still, 7 unit blocks would reveal too much of the original breakbeat. So for
this modification to the algorithm, use the set:

ODDNUMBERS2= {n integer: n is odd, and n<= (SubDiv/2+1) }

A cutup using 16ths is more easily interpreted if played against a solid backing beat.
Then it becomes a very dextrous cutup indeed. This is only if the groove of the
breakbeat original is in straight 16s. Otherwise the algorithm must be adapted with
groove information, as below.
 As for subdivisions which have prime numbers other than two in their
decompositions, these play against the source breakbeat, which is usually quantised in
rigid 16s. Used to cut up source audio that is not itself rhythmic, they can lend their
own rhythmic flavour without any clash. Or the clash is itself an interesting musical
effect.

3.3 Extending the Model
The design of phrases could show a lot more care. We might want to favour the
choice of larger blocks to begin, with smaller ones to end. We can keep track of all
choices of partitions made so far, and always guide the choice towards examples so
far ignored in the probability space (this might use Charles Ames' method of
statistical balance [1]). We can vary the Subdivision level based upon position in a
phrase. A stuttering completion of the phrase might use 16s or 32s for those manic
roll effects, while the main cuts are in 8s.
 There is an essential issue of groove. Levels of swing or even more complex groove
templates would have to be built into the algorithm to cope with crooked 16th note
cuts that preserve a 'swing' in the original source sample.
 At base we assume 4/4 measures, without change of time signature or tempo. The
algorithm can be adapted to work from more complex changing time signatures by
taking lowest common multiples of the time signature denominator. Tempo changes
are easily dealt with, since we just change the time positions of cuts after the
partitions have been calculated.
 The ability to work from a changing set of time signatures would have the helpful
side effect of dealing with cases where we wished phrases to be subdivided to favour
particular beats. So, for instance, a phrase of three bars of 4/4 could be rewritten as
three phrases of 3/4+4/4+5/4 to force a strike on the first, fourth, seventh beats.
 There is a quick fudge to enable the algorithm as is to work with a n/d time
signature. Multiply the subdivisions by n/d, and the tempo by d/n. Then to the
algorithm, it is dealing with a 4/4 bar, but the output will be cut in the requisite way.
 The reader will of course see their own generalisations of the algorithm. The
exposition here gives a model helpful for automating the cutting of breakbeats in a
consistent style. The same algorithm can be adapted for any sort of source audio, and
any partition effect on macro down to micro level sample triggering. The assumptions
of the model can also be ignored for some strange rhythmic effects. This may be used
subtly, as in telling the model a tempo slightly above that of the source, for a catch up
effect, or an underestimated tempo, for an overloading effect.

3.4 Implementations
Implementations of the model have been made in SuperCollider for realtime use, and
in a stand alone Win32 application for non-realtime (much faster than realtime)
rendering. It would be relatively easy to set up implementations in Csound, or any
other desired rendering language.

4 Conclusions
In this paper solutions were described to two tasks using algorithmic composition
techniques, with application to, though by no means limited to, dance music. The
construction of models gave analytical insight into dance music styles. Using music
programming languages like SuperCollider allows the ready adaptation of this work
to specific compositions, but specific processes could be packaged in a limited
interface tool. The use of algorithmic composition systems for specific higher level
composition tasks in home virtual studios will surely gain precedence in the next few
years. The tools themselves will have their own distinctive features, making their use
recognisable much like synthesis systems or sound processing tools can be
distinguished. Hopefully, the tools will inspire new creative uses, and not just blind
imitation of past masters.

5 Bibliography

5.1 Publications
[1] Ames, Charles. 1990. Statistics and compositional balance. Perspectives of New
Music. 28:1.

[2] Shapiro, P. 1999. Drum 'n' bass, the Rough Guide. Rough Guides Ltd.

5.2 Web Sites
[3] software
Recycle- http://www.propellerheads.se
Wave Surgeon/Mobius- http://www.squarecircle.co.uk
SuperCollider- http://www.audiosynth.com/
Koan- http://www.sseyo.com/

[4] techniques
breakbeat cutting
good FAQ- http://www.dnbproduction.com/index.asp
very good techniques area- http://spinwarp.com/

general (some tips and tricks, discussions of groove)
http://www.dancetech.com/

6 Appendix- Pseudo C code for automatic breakbeat
cutting

Local variables and variables persisting between calls to this function are not declared
here.

http://www.propellerheads.se
http://www.squarecircle.co.uk
http://www.audiosynth.com/
http://www.sseyo.com/
http://www.dnbproduction.com/index.asp
http://spinwarp.com/
http://www.dancetech.com/

//while loop to desired length output (non realtime),
//or scheduling itself for next decision(realtime)
{
if (unitsdone==totalunits) //NEW PHRASE
{
//How many bars?
barsnow= randominteger(1, MaxPhraseLength);
//prepare units counter
totalunits= barsnow*SubDiv;
unitsdone=0;
repeatsdone=0; repeats=0;
}

unitsleft= totalunits- unitsdone; //indirectly gives current time position

if(repeatsdone==repeats) //NEW CUT
{
repeatsdone=0;
//How large a cut?

//ending a phrase with a repeating unit block? can only happen if less than a
bar left
if(unitsleft<SubDiv && (randomfloat(0.0, 1.0)< RepeatChance))
{
unitsincut=1;
repeats=unitsleft;
}
else
{
temp= SubDiv/2;

if(temp % 2==0) temp= (temp-2)/2;
else temp= (temp-1)/2;

unitsincut = randominteger(0, temp);

//turn unitsincut into an odd number less than SubDiv/2
unitsincut = 2* unitsincut +1;

//unitsleft is at least 1, and unitsincut is odd, so will terminate
while(unitsincut >unitsleft) unitsincut -=2;

repeats=randominteger(1, MaxRepeats);

//if overshoot on repeats, allow a terminating segment
if(repeats*unitsincut>unitsleft)
{
unitsincut= unitsleft;
repeats=1;
}

}

//prepare indexing info into the SourceSample.
//take current position within phrase modulo the SourceSample length.
//(for accurate breakbeat cutting, assumes that the SourceSample is
//in 4/4, and an exact number of bars long at the given tempo)
//store the sample indexing data so that each repeat can access the same
block
//CODE NOT REPRODUCED HERE
}

{ //CARRY OUT AN EVENT
//have source indexing data for this repeated block

//use unitsleft to get start time position, unitsincut gives duration

//RENDER BLOCK- CODE NOT REPRODUCED HERE

unitsdone += unitsincut;
repeatsdone += 1;
}

}

	return:

