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Abstract

Digital Waveguides have been used extensively for musical

instrument and room acoustics modelling. They can be

used to form simplistic models for ideal wave propagation

in one, two and three dimensions. Models in 1-d for string

and wind instrument synthesis are now common and more

recently a model for a drum, realised by creating an in-

terface between 2-d and 3-d waveguide meshes, has been

presented (Aird et al., 2000). A framework is thus in place

for the virtual construction of any musical instrument, and

indeed the design of new or abstract instruments. However

straight-forward waveguides and waveguide meshes act in

an extremely ideal nature, and phenomena such as sti�ness

and frequency dependent losses are often compromised or

ignored altogether. In this paper we address these issues

by considering extensions to the waveguide theory to in-

corporate material properties such as internal friction and

elasticity. The models are introduced in the 1-d case for

strings and bars, but could easily be extended to waveg-

uide mesh models for sti� membranes and plates.

1 Introduction

This paper is divided in to �ve sections and introduces nu-

merous areas of current research into physical modelling

using digital waveguides. Firstly, in this introduction we

quickly revise the de�nition of the digital waveguide and

the lossless scattering junction. Following this we intro-

duce the physical systems we wish to model. Sections three

and four describe the models, and present simulation re-

sults and discussion, while the �nal section summarises the

paper, and discusses the future directions that the authors

wish to pursue.

A digital waveguide is simply a bi-directional delay line

and is a discrete-time formulation of the travelling wave

solution to the 1-d wave equation (Smith, 1992). For a

junction of N waveguides, each with impedance Ri, where

i = 1; : : : ; N the junction velocity Vj may be written as,

Vj(n) =
2
�PN

i=1RiV
+
j;i(n)

�
PN

i=1Ri

; (1)

where V +
j;i is the incoming velocity from the ith waveguide.

Furthermore we write the outgoing velocity V �

j;i along the
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ith waveguide as

V
�

j;i(n) = Vj(n)� V
+
j;i(n); (2)

and observe that we may also calculate junction velocity

from the outgoing velocities as

Vj(n) =
2
�PN

i=1 RiV
�

j;i(n)
�

PN

i=1 Ri

:

2 Some Physical Properties of

Strings and Bars

In this section we introduce some of the non-linearities

inherent in the vibrations of real 1-d resonators and dis-

cuss elementary methods for including frequency depen-

dent wave propagation speeds (dispersion) and losses.

2.1 Sti�ness in Strings and Bars

The Digital Waveguide is derived by discretising the trav-

elling wave solution to the 1-d wave equation

F
@2y

@x2
= �

@2y

@t2
; (3)

where F is string tension and � is mass density per unit

length. In this ideal formulation the only restoring force

is due to tension and sti�ness and internal friction are

neglected. Furthermore all waves travel with the same

speed c =
p
F=�. In an ideal beam there is no tension and

the restoring force is due to sti�ness. When the beam is

struck, localised tension is introduced proportionally to the

amount the beam is bent. The resultant partial di�erential

equation (PDE) is

@2y

@t2
= �

EI

�A

@4y

@x4
; (4)

where �, E is Young's modulus, A is the beam's cross-

sectional area and I, the moment of inertia of the

beam about it's perpendicular axis (Fletcher and Rossing,

1991)(Morse and Ingard, 1968). Note the 4th order spatial

derivative. This is the Euler-Bernoulli formulation for sti�

bars which is considered a valid approximation in the low

frequency range (Chaigne and Doutaut, 1997). By consid-

ering harmonic solution to (4) of the form y = Aej(kx�wt)



we �nd that waves travel with a speed which varies with

frequency according to c(w) =
p
w=a, where a =

q
�A

EI
.

Thus wave speed increases (from zero) with frequency. By

adding a bar like term to (3) we may represent a sti� string

as follows.

@2y

@t2
=

F

�

@2y

@x2
�
EI

�A

@4y

@x4
; (5)

where now the restoring forces are due to tension and

bending sti�ness. Again by considering harmonic solu-

tions to (5) we may derive a expression for the frequency

dependent wave speed in a sti� string.

c(w)
2
=

F

2�
+

s�
F

2�

�2

+
�A

EI
w2: (6)

Note that when the sti�ness is removed that (6) reduces

to the case of the ideal string, and that when all tension is

removed we reduce to the case of the ideal beam. We also

note that for low frequencies the speed approximates that

of the string, but that as frequency increases the speed of

wave travel becomes more bar like. Finally, we observe

that the introduction of a constant tension to a beam re-

sults in a non-zero wave speed at zero frequency.

2.2 A String on a Viscoelastic Founda-

tion

In this short section we show how it is possible to add

new terms to the PDE's described previously in order to

introduce dispersion and frequency dependent loss. Firstly

we consider placing a string on a purely elastic foundation,

which may be thought of as laying the string on bed of

springs (Gra�, 1975). The governing equation is now

F
@2y

@x2
�Gy = �

@2y

@t2
; (7)

where the new parameter is the foundation sti�ness G.

By again trying harmonic solutions we �nd the following

relationship between frequency and wave number,

w
2
= c

2
0

�
k
2
+
G

F

�
; (8)

where c0 =
p
F=� is the wave speed in the absence of foun-

dation sti�ness. By considering frequency against wave

number we are able to predict both the fundamental fre-

quency, and then the relative positions of each subsequent

harmonic. A graph of this relationship is shown in Figure 1

and shows that the fundamental increases with frequency

and that as the wavenumber increases, the resonant peaks

will approach a harmonic series equivalent to the string in

the absence of foundation sti�ness.

We now propose a damped string obtained by including

a resistive force to the motion resulting in the following

governing equation,

F
@2y

@x2
� g

@y

@t
= �

@2y

@t2
; (9)

where g is the resistive coeÆcient (Gra�, 1975). This pro-

cess can be thought of in the same terms as for the elastic

w

k

w = c0k

w = c0

q
G
T

Figure 1: Frequency against wavenumber for a string

on an elastic sub-base.
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Figure 2: Freq-dependent Damping for String on Vis-

cous Sub-Grade.

foundation, only with dash-pots replacing springs. This

time however the damping prohibits the free propagation

of harmonic waves, however we may consider solutions of

the form y = Ae��xej(kx�wt) = Aej[(k+j�)x�wt]. Thus

we have dispersive travelling waves which also include fre-

quency dependent damping. Solving (9) for these solutions

yields

k =M
1=2

cos(�=2); � =M
1=2

sin(�=2); (10)

for

M =
w

F

�
g
2
+ �

2
w
2
�1=2

; � = tan
�1

�
g

�w

�
:

We see that w will dominate for large values of the fre-

quency, so that in any practical situation, the dispersion is

minimal at low frequencies, and negligible elsewhere. We

should also note that the damping term will cause damp-

ing of a lowpass nature. Shown in Figure 2 is the damping

term for some typical simulation values.

3 Incorporating Bending Sti�-

ness into Waveguide Models

In this chapter we investigate extensions to the Digital

Waveguide in order to include the dispersion relationships

found in sti� strings and vibrating beams. Sti�ness in

strings contributes to the 'twangy-ness', whilst for bars, an

increase in the sti�ness would result in more metallic tones.

Previous work (Van Duyne and Smith, 1994a)(Van Duyne

and Smith, 1994b) in this area has utilised Allpass �lters

(Laakso et al., 1996) placed at the waveguide terminations

in order to introduce phase distortion, however these �lters

cannot be tuned precisely to match a true strings sti�ness

and cannot be used to model vibrating bars which exhibit

zero wave speed at zero frequency. Thus we search for an

all inclusive method which inherently models the so-called

bending waves.
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Figure 3: DWN for Euler-Bernoulli Bar.

3.1 Digital Waveguide Networks

A so-called Digital Waveguide Network (DWN) which

models the Euler-Bernoulli bar was suggested in (Bilbao,

2001)(Bilbao, 2000). In this chapter we brie
y describe

the model and show it's equivalence to a stable �nite dif-

ference scheme for the sti� wave equation introduced in

Section 2. Consider decoupling equation (4) as follows

@v

@t
= �

1

�A

@2m

@x2
; (11)

@m

@t
= EI

@2v

@x2
: (12)

In this equation v is the beam's transverse velocity, while
m can be thought of as a bending moment. Using cen-
tred di�erences we arrive at the following di�erence scheme
(FDS).

Vj(n+ 1)� Vj(n) =

�

�

�A

�
Mi+1(n+

1

2
) � 2Mi(n+

1

2
) +Mi�1(n+

1

2
)

�
(13)

Mi(n+
1

2
) �Mi(n�

1

2
) =

�EI [Vi+1(n) � 2Vi(n) + Vi�1(n)] ; (14)

where � = T
�2 for time step T = 1

fs
and spatial step �.

The proposed waveguide structure is shown in Figure 3.

It is built from two coupled interleaved waveguides. To

form an interleaved waveguide we split each unit of delay

and place an extra junction in between the existing junc-

tions in order to make available an alternative wave vari-

able, in this case M . By using two interleaved waveguides

placed one spatial step out of sync means we have have

the two wave variables available at every spatial position.

Intuitively this makes it possible to calculate the bend-

ing moment at each point, and we can see this happening

through the coupling in Figure 3 where waves travelling to

the moment junction from the velocity junction are multi-

plied by two, and halved travelling in the other direction.

Now, in order to derive an equivalence between the

DWN structure of Figure 3 and the FDS of (13)(14)

we require a little more information regarding the inter-

leaved waveguides. In their original formulation, inter-

leaved waveguides carried voltage and current waves (Bil-

bao, 2000) and in their use here V is assumed to be voltage-

like, while M is the current like variable. If we denote a

left-going wave by superscripting with a (+) and a right

going wave with a (-) then

M
+

= Y V
+

M
�

= �Y V �

;

where Y is the waveguide impedance, with admittance

Z = 1=Y . Furthermore, in an interleaved delay line, the

incoming waves to a scattering junction j can be expressed

as the outgoing waves at neighbouring junctions in the fol-

lowing way for current-like waves,

M
+
0;j(n) = �M

�

1;j+1(n�
1

2
);

M
�

1;j(n) = �M
�

0;j�1(n�
1

2
); (15)

and for voltage-like waves,

V
+
0;j(n) = V

�

1;j+1(n�
1

2
);

V
�

1;j(n) = V
�

0;j�1(n�
1

2
): (16)

That is current-like waves travel with a sign inversion.
Now beginning with a moment like junction we have

Mj(n+
1

2
) =

2

Zj

�
~V +
;j (n+

1

2
) + ~V +

1;j(n+
1

2
) + ~V +

2;j(n+
1

2
)

�
;

where ~V +
l;j = ZlM

+
l;j represents incoming velocity to the

moment junction, and is superscripted by a tilde so as
to disassociate it with the incoming velocity to the veloc-
ity junction at the same time step. Note how the total
junction velocity and total junction current can both be
calculated using (1). Now using the relationships (2), (15)

and (16) repeatedly, and noting that ~V �

l;j = �ZlM
�

l;j , we

have,

Mj(n+
1

2
) =

2

Zj

h
V
�

1;j�1(n) + V
�

0;j+1(n)� 2V �2;j(n)
i

=
2

Zj
[Vj�1(n) + Vj+1(n) � 2Vj(n)]

�

2

Zj

h
V
+
1;j�1(n) + V

+
0;j+1(n)� 2V +

2;j(n)
i

=
2

Zj
[Vj�1(n) + Vj+1(n) � 2Vj(n)]

�

2

Zj

�
~V �0;j(n�

1

2
) + ~V �1;j(n�

1

2
) + ~V �2;j(n�

1

2
)

�

=
2

Zj
[Vj�1(n) + Vj+1(n) � 2Vj(n)]

+ Mj(n�
1

2
);

which is identical to (14) if we set the total admittance at

the moment junction to

Zj = Z0 + Z1 + Z2 =
2

EI�
:

We may similarly start from a velocity junction to arrive

at a the following requirement for total velocity junction

impedance

Yj = Y0 + Y1 + Y2 =
2�A

�
:
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Figure 4: Evolution of transverse displacement waves

along Euler-Bernoulli Bar, t = 0
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Figure 5: Evolution of transverse displacement waves

along Euler-Bernoulli Bar, t = 7:03� 10�4

Thus the DWN of Figure 3 is entirely equivalent to the

FDS of (13)(14) and is hence a stable numerical scheme

for the Euler-Bernoulli equation (4).

We carried out the following simulation to test the per-

formance of the proposed model. We chose to model a

steel bar with the following characteristics,

E = 1:4� 10
12
N=m

2
;

� = 5:38 � 10
4
kg=m

3
;

with a square cross section of height h = 0:005m. This

results in a step size of approximately � = 1=55m when

the sample rate is set to fs = 44100Hz, and we consider

modelling a bar of length 1m. Notice that we have cho-

sen a bar with a very small cross-section. This has been

done so as to keep the required sample rate down for the

purposes of demonstration. Shown in Figures 4 to 7 is the

time evolution of transverse displacements along the bar

of our simulation which has �xed ends which are allowed

to pivot and when the model is excited with an impulse.

The model clearly exhibits a frequency dependent speed

of wave propagation, with the higher frequencies reaching

the boundary �rst. Also, the shape of the displacement is

consistent with the expected displacements (Morse and In-

gard, 1968). Finally we include a plot of frequency against

harmonic index for our bar simulation in Figure 8. Notice

how the shape of the curve is consistent with the expected

curve which has k proportional to
p
w. Continued re-

search by the authors on this model hopes to soon yield

a simulation of a sti� string by treating the string as a
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Figure 6: Evolution of transverse displacement waves

along Euler-Bernoulli Bar, t = 8:84� 10�4
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Figure 7: Evolution of transverse displacement waves

along Euler-Bernoulli Bar, t = 2:22� 10�3

thin sti� bar with circular cross section, held at a constant

tension, however, this is out with the space constraints of

this paper.

4 Material Modelling

It has been suggested that material modelling could be

introduced into physical models by separately modelling

shape and material (Djoharian, 1999)(Djoharian, 2000).

Shape models could be attained using �nite di�erence

schemes, while the material could be implemented by wear-

ing the shape model with a viscoelastic dress. Djoharian

(Djoharian, 1999)(Djoharian, 2000) suggests that the ma-

terial should be represented by using series-parallel com-

binations of springs and dashpots tuned to match a given

materials viscoelastic response (Tschoegl, 1989)(Lakes,

1999). We have been investigating the use of digital waveg-

uide as conservative models for the shape of a given res-

onator. For the material part, the simplest cases are when

the resonator is placed on an elastic or viscous foundation,

as described in Section 2.

4.1 Modelling the String on an Elastic

Base

The string on an elastic base can be modelled by placing
a self-loop of one unit of delay with a sign inversion at
an extra port on each waveguide junction. We assume
that the waveguide impedance is 1 while the self loop is
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model.

attached with impedance Rs. Beginning with the junction
velocity equation for junction j, we have

Vj(n) =
2

R

h
V
+
j;1(n) + V

+
j;2(n) + RsV

+
j;s(n)

i

=
2

R

h
V
�

j�1;2(n� 1) + V
�

j+1;1(n� 1)� RsV
�

j;s(n� 1)
i

=
2

R
[Vj�1(n� 1) + Vj+1(n� 1)� RsVj(n� 1)]

�

2

R

h
V
+
j�1;2(n� 1) + V

+
j+1;1(n� 1)� RsV

+
j;s(n� 1)

i

=
2

R
[Vj�1(n� 1) + Vj+1(n� 1)� RsVj(n� 1)]

�

2

R

h
V
�

j;1(n� 2) + V
�

j;2(n� 2) +RsV
�

j;s(n� 2)
i

=
2

R
[Vj�1(n� 1) + Vj+1(n� 1)� RsVj(n� 1)]

� Vj(n� 2);

which is equivalent to

Vj(n+ 1)� 2Vj(n) + Vj(n� 1) =

2

R
[Vj�1(n)� 2Vj(n) + Vj+1(n)]� 4

Rs

R
Vj(n);

where R = 2 + Rs is the total junction impedance. Now,

recalling equation (7) we may write a FDS for the system

as

Vj(n+ 1)� 2Vj(n) + Vj(n� 1) =

�
F

�
[Vj�1(n)� 2Vj(n) + Vj+1(n)]� T

2G

�
Vj(n);

where T is the time step, � is the spatial step, with � =
T2

�2 . Thus we must �x

2

R
=

�F

�
;

4Rs

R
=

GT 2

�
: (17)

By �xing the time step T , then solving (17) gives

Rs =
2GT 2

4��GT 2
;

with spatial step

� =

s
T 2F

�
4

4��GT 2

�
:

Sti�ness G Model Frequency Real Frequency

0 96 96:1769

1 96 96:1776

10 96 96:1835

102 96 96:2427

103 97 96:8331

104 103 102:5501

105 148 148:0377

106 369 368:6482

Table 1: Comparing measured and real fundamental

frequencies
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Figure 9: Frequency versus wavenumber for waveguide

on a bed of springs.

We carried out an experiment for a string of length L =

0:5m with density 0:2kg=m2 held at tension F N=m. The

fundamental frequency (in Hz) of vibration may be calcu-

lated from

f1 =
c

2�

���
L

�2
+
G

F

� 1
2

:

Shown in Table 1 are the measured and expected funda-

mental frequencies for various values of the sti�ness pa-

rameter G. All frequencies are measure in Hz and a high

level of accuracy is attained. Furthermore we may also

examine the dispersion properties by considering the posi-

tions of the resonant modes. Shown in Figure 9 shows plot

of frequency against wavenumber for various values of G in

our model. The fundamental frequency is that where the

wave number is one and it clearly increases with increasing

sti�ness. We compare this graph to that of Figure 1 which

shows the expected behaviour. At �rst each curve has zero

gradient, but as the wave number k increases each curve

approaches the straight line which represents the string in

the absence of an elastic foundation.

4.2 Modelling the String on an Viscous

Subgrade

We take a similar approach to that of the elastic foundation

when modelling the string an a viscous subgrade given by

(9). Again, we extend each waveguide junction to a 3-port,

but this time the third junction receives a zero input signal.

Thus the third port acts as a hole, out of which energy

may seep. Now, again setting the waveguide impedance to



1 and this time setting the third impedance to Rd we may

follow a similar formulation as before. This time we �nd

that

Vj(n+ 1)� 2Vj(n) + Vj(n� 1) =

2

R
[Vj+1(n)� 2Vj(n) + Vj�1(n)]

�
2Rd

R
[Vj(n)� Vj(n� 1)] ; (18)

where this time R = 2+Rd. Now clearly (18) is equivalent

to a FDS for (9) if we set

2

R
=

�F

�
;

4Rs

R
=

gT

�
: (19)

Hence it is possible to introduce a physically reasonable

loss to a digital waveguide. Traditionally losses have been

added to digital waveguides by placing lowpass �lters at

the re
ective terminations where the �lters are designed

to match measured losses. It is the authors' view that the

method presented here could be extended to produce more

physically relevant and controllable losses.

5 Conclusions and Future Re-

search

In this paper we set out the requirements for the exten-

sion of the digital waveguide technique for the physical

modelling of more realistic systems. We implemented a

model of a waveguide bar, presenting encouraging results

consistent with the literature, and indicated how it could

be used for sti� strings. We then discussed how we could

model more complicated material parameters and derived

two models which introduced elementary phase distortion

and frequency dependent losses in string models.

The models presented in this paper can be thought of as

building blocks for complete instrument models. Once ex-

tended to include sti� strings, sti� membranes and plates,

the interfacing procedure described in (Aird et al., 2000)

would allow us to build complete instrument models. In

the case of a drum for example, we may now create a realis-

tic model for a membrane, which includes bending sti�ness

and material parameters for it's visco-elastic response. We

can separately build a model for the drum shell made of

wood or metal, say. The shell and membrane models are

2-d models, which can both be interfaced to the air col-

umn within the drum. Furthermore we would now be able

to produce instruments made with materials not usually

associated to them. For example, a drum shell could be

made from ice or a xylophone with glass bars, which would

not necessarily be possible in reality.
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